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ABSTRACT
We present a study of energetic-electron trapping and acceleration in the Kelvin–Helmholtz-induced magnetohydrodynamic
(MHD) turbulence of post-flare loops in the solar corona. Using the particle-tracing capabilities of MPI-AMRVAC 3.0, we evolve
ensembles of test electrons (i.e. without feedback to the underlying MHD) inside the turbulent looptop, using the guiding-center
approximation. With the MHD looptop model of Ruan et al. (2018), we investigate the relation between turbulence and particle
trapping inside the looptop structure, showing that better-developed turbulent cascades result in more efficient trapping primarily
due to mirror effects. We then quantify the electron acceleration in the time-evolving MHD turbulence, and find that ideal-MHD
processes inside the looptop can produce nonthermal particle spectra from an initial Maxwellian distribution. Electrons in
this turbulence are preferentially accelerated by mirror effects in the direction perpendicular to the local magnetic field while
remaining confined within small regions of space between magnetic islands. Assuming dominance of Bremsstrahlung radiation
mechanisms, we employ the resulting information from accelerated electrons (combined with the MHD background) to construct
HXR spectra of the post-flare loop that include nonthermal-particle contributions. Our results pave the way to constructing more
realistic simulations of radiative coronal structure for comparison with current and future observations.
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1 INTRODUCTION

Solar flares are sudden brightening phenomena that occur frequently
in the solar atmosphere. Local broadband emission (e.g. EUV, soft
X-ray, and hard X-ray) increases significantly when a solar-flare event
occurs, and the required energy for the emission is likely sourced by
the solar magnetic field. A classical explanation of this mechanism
(Shibata et al. 1995; Priest & Forbes 2002; and Fang et al. 2016
for the last point below) is described in several steps: (1) magnetic
reconnection in the region between a coronal loop and a suspended
flux rope above causes a rapid release of magnetic energy at coronal
height; (2) the configuration of the local magnetic field is altered
and magnetic arcades form, the footpoints of which are at the solar
surface; (3) the released energy is then transported downward toward
the chromosphere; (4) energy deposited at the chromosphere causes
upward evaporation flows, which fill the magnetic arcades with hot,
dense plasma; (5) the evaporation flows deep inside the loop can
mix into a highly turbulent state, creating chaotic distributions of
magnetic fields threading hot plasma. A schematic representation of
this process is shown in Fig. 1, which is in fact a cartoonized variant
of a recent multidimensional MHD simulation which incorporates
dynamically and self-consistently the role of particle beams (visible
in orange) in the entire flare system (Druett et al. 2023a). In this work,
we specifically focus on the inner region (blue balloon in Fig. 1).

Hot plasma in coronal loops releases strong EUV and soft-X-ray
(SXR) emission, bright enough for loops to frequently appear in
EUV and SXR images of flare events (e.g. Su et al. 2013; Nindos
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Figure 1. Schematic representation of a flaring loop, using the self-consistent
interaction between thermal plasma (MHD) and accelerated energetic beams
(in orange), from Druett et al. (2023a). This work focuses only on the cen-
tral region (see blue balloon), where secondary particle acceleration and
SXR/HXR emission may occur due to rising flows meeting and mixing deep
inside the looptop.
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et al. 2015; Chen et al. 2017). Separated hard-X-ray (HXR) sources
can often be found in the flaring region, particularly at the foot-
points of the EUV and SXR loops and near the looptop (e.g. Masuda
et al. 1994; Chen et al. 2020), suggesting that energetic electrons
were produced during the events. The looptop region can potentially
source radiation from processes that are secondary to the main im-
pulsive reconnection described above. This secondary generation of
radiation has been relatively underexplored, particularly in terms of
the associated dynamics of energetic particles emitting in the X-ray
wavelengths.

In general, the generation of energetic electrons is a hot topic in
the study of solar flares, as particle acceleration and the following
collisional energy loss act as an important path of energy transfer and
transport (e.g. Kerr et al. 2020). Energetic electrons are thought to be
generated at coronal height, produce looptop HXR source(s), to then
move to the chromosphere along magnetic-field lines and produce
footpoint sources, losing most of their energy there through collisions
(Krucker et al. 2008; Benz 2017). During a solar-flare event, up to
1032 erg of energy is released via magnetic reconnection, and up to
50% of the released energy is involved in the generation of nonther-
mal electrons (e.g. Aschwanden et al. 2017). Potential acceleration
mechanisms include electric DC-field acceleration, stochastic accel-
eration, and shock acceleration (e.g. Zharkova et al. 2011). The latest
so-called “self-consistent” models for standard flare scenarios do not
(yet) address the detailed acceleration aspects, but do allow for two-
way coupling between the thereby generated energetic electron beams
and the full thermal plasma evolutions (Ruan et al. 2020; Druett et al.
2023a,b). Within such models, the post-flare loops underneath the
current sheet show clear evaporations, which in these models can be
due to thermal conduction, reflection and/or be entirely beam-driven.

Fang et al. (2016) proposed a scenario for the generation of the
nonthermal electrons in which evaporation from the chromosphere
produces turbulence at coronal height via the Kelvin–Helmholtz in-
stability (KHI), and electrons are then accelerated in the turbulence
through stochastic processes. In that scenario, KHI turbulence may
also confine the accelerated electrons inside the looptop, concur-
ring in the creation of the strong looptop HXR sources that have
been observed. In observations, strong chromospheric evaporation at
hundreds of km/s is frequently found in flare events (e.g. Milligan &
Dennis 2009; Tian et al. 2014). Magnetohydrodynamic (MHD) simu-
lations demonstrate that these fast evaporation events have the ability
to produce KHI turbulence inside flare loops (e.g. Fang et al. 2016;
Ruan et al. 2018, 2019). The contribution of KHI turbulence to the
production of solar-flare nonthermal electrons (as opposed to direct
acceleration in the current sheet/reconnection site above) remains to
be assessed. It is relatively difficult for such a multistep process to
efficiently transfer (i.e., up to a fraction of 50%) the reconnection-
released energy to nonthermal electrons (Cargill 1996; Miller et al.
1997). Nevertheless, some fraction of the nonthermal electrons may
still be produced in this way, but this has not been quantitatively
verified in simulations.

To study the energization of particles in the solar corona, particle
methods are often employed in simulations to obtain information
on the kinetic processes at play. For investigating the electron ac-
celeration in a large-scale phenomenon such as a flare, fully kinetic
methods (e.g. Particle-in-Cell) are to date too computationally ex-
pensive, even when employing reduced scale separation (such as a
reduced proton-to-electron mass ratio; see e.g. Baumann et al. 2013).
Therefore, fully kinetic simulations are only employed to study very
limited domain sizes (e.g. Guo et al. 2014; Li et al. 2019); for larger
simulations, test-particle methods can instead be employed owing
to their relatively reduced costs. Test particles evolved on top of an

MHD simulation do not provide feedback to the MHD fields, lack-
ing self-consistent kinetic mechanisms. Nevertheless, test particles
can be used to qualitatively study particle motion and acceleration
and in simulations of coronal flares, even as large as the entire flare
loop (e.g. Wood & Neukirch 2005; Gordovskyy et al. 2010, 2014;
Threlfall et al. 2015; Zhou et al. 2015, 2016; Gordovskyy et al. 2020;
Kong et al. 2022). The same approach can also adopt idealized setups
such as coalescing magnetic islands, where extreme resolutions in
MHD (obtained via grid adaptivity) can help identify sites of particle
trapping (e.g. Zhao et al. 2021).

In this work, we utilize test-particle simulations to investigate
the particle acceleration scenario suggested by Fang et al. (2016),
i.e. the turbulent acceleration of electrons inside the looptop. The
test particle evolve in an MHD background for which we employ a
simplified model of chromospheric evaporation in the post-flare loop
state. This model is somewhat agnostic of the primary reconnection
process above the looptop, which we do not model. As such, we
simply assume that footpoint heating occurs and fluid flows meet and
mix in the looptop region. Our objectives are to determine whether
KHI turbulence in this region can confine electrons over long times
inside the looptop, and whether these electrons can also experience
acceleration to high energies to produce the strong looptop HXR
sources that have been observed. To do so, we employ state-of-the-art
MHD simulations of looptop turbulence first presented in Ruan et al.
(2018) and analyze the trapping and acceleration of a population of
test electrons inside the looptop. We then calculate whether the HXR
emission obtained in these runs is compatible with observations.

This paper is organized as follows: in Sec. 2 we review the MHD
and test-particle models employed in our looptop simulations. In
Sec. 3 we investigate the mechanism of particle trapping inside the
MHD-simulated coronal looptop. In Sec. 4 we quantify particle ac-
celeration in our test-particle runs. In Sec. 5 we discuss whether the
measured acceleration is compatible with HXR emission in looptops.
Finally, in Sec. 6 we summarize our results.

2 TEST-PARTICLE MODEL IN IDEAL MHD

2.1 MHD Model for a Coronal Loop

Our MHD simulations are performed with the open-source
MPI-AMRVAC code (Xia et al. 2018; Keppens et al. 2023). We run
three ideal-MHD simulations (i.e. without including resistivity or
other diffusion terms) with a simplified, two-dimensional (2.5D, i.e.
including all three vector components) flare model, in which the
reconnection current sheet is not included. The full setup is ex-
plained in detail in Ruan et al. (2018), and we briefly summarize it
here. The corona and the chromosphere are included at the bottom
boundary of our setup, for which we employ a numerical domain of
−40 Mm ≤ 𝑥 ≤ 40 Mm and 0 Mm ≤ 𝑦 ≤ 50 Mm. The base numeri-
cal resolution consists of 128×80 cells; via adaptive mesh refinement
(AMR) we attain an effective resolution of 2048 × 1280 cells at the
highest AMR level (using 5 levels). This implies an effective reso-
lution of about 40 km, rivaling the observational limits. A potential
magnetic field is set up in this configuration, which includes several
magnetic arcades in the atmosphere. Localized heating is added at
the chromospheric footpoints of selected magnetic arcades to pro-
duce evaporation flows. These flows generate a flare loop by filling
the magnetic arcades with hot, dense plasma. Before the evaporation
occurs, the magnetic-field strength at the footpoints is 80 G, and at
the looptop 50 G.

The three runs differ by the amount of heat injected at the foot-
points, from which fast plasma flows rise to then meet at the looptop.
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Particles in Turbulent Coronal Loops 3

Figure 2. Snapshot at 𝑡 = 2.5𝑡0 = 186 s of one of the MHD simulations of coronal loops (case C) used as initial conditions for the test-particle runs. Left: Spatial
distribution of the temperature. Right: Spatial distribution of the magnetic-field strength.

Where the streams meet, the KHI can develop and cause a turbu-
lent cascade. The footpoint heating rate is given by Eqs. (12-16) of
Ruan et al. (2018); in particular, we vary the heat injection via the
parameter 𝑐1 in their Eq. (14). The resulting three simulations have
𝑐1 = 4.29 × 1012, 8.24 × 1012, 1.288 × 1013 erg cm−2, which we
label as cases A, B, and C respectively. The parameter 𝜆𝑡 in Eq. (15)
of Ruan et al. (2018) is set to 60 s in all three cases, and other pa-
rameters are provided in Sec. 2 of their paper. These parameters are
inspired by energy estimates from observations: assuming that the
depth of the loop in the out-of-plane direction is ∼ 10 Mm, then the
energy injected into the chromosphere is of order ∼ 1030 erg, within
the range of M-class flares (e.g. Aschwanden et al. 2016). These
parameters also provide maximum energy deposition rates of around
3× 1010 erg/cm2/s at the footpoints, which align well with observa-
tions and modeling estimates (e.g. Allred et al. 2015 and references
therein).

Due to the different amounts of heat injected, the three MHD runs
evolve in a substantially different way, with case C developing clear
turbulent structures that, over time, cascade towards smaller length
scales. We let all cases evolve until 𝑡 = 2.5𝑡0, where the unit time in
this work is 𝑡0 = 86 s. This unit time is the time scale for acoustic
waves to travel a distance 𝐿0 = 10 Mm in a typical coronal-plasma
environment with temperature 𝑇0 = 1 MK. The spatial distribution
of temperature and magnetic-field strength at 𝑡 = 2.5𝑡0 is shown in
Fig. 2 for case C, i.e. the case with the strongest heat injection at
the footpoints. We can observe that the upper part of the looptop is
characterized by high temperatures (≳ 20 MK); this region contains
turbulent magnetic-field structures, and the looptop plasma is con-
fined inside the loop by the much stronger ambient magnetic field
outside.

2.2 Test Particles: Guiding-center Approximation

To study the dynamics of electrons in the looptop turbulence of our
MHD simulations, we evolve ensembles of electrons using the test-
particle module of MPI-AMRVAC 3.0 (Keppens et al. 2023). These
particle ensembles are tracked in the time-evolving MHD background
described in Sec. 2.1, starting from the MHD state at 𝑡 = 2.5𝑡0.
Electrons are initialized according to a Maxwellian distribution with
temperature 𝑇 = 20 MK (approximately the average temperature
inside the looptop, see Sec. 3); since the average magnetic-field
strength inside the looptop is 𝐵 ∼ 5–40 G (see Fig. 2), the maximum
electron gyroradius 𝜌C =

√
𝑚𝑒𝑘𝑇/(|𝑞𝑒 |𝐵) ∼ 1 m (where 𝑚𝑒 and 𝑞𝑒

are the electron mass and charge) at initialization. Because our MHD
system size is of order 107 m, spatially resolving the gyromotion
on the numerical grid would require unachievable resolution; the
same applies for the gyration time scales, which are much faster than
the MHD dynamical time. For this reason, we choose to evolve our
test particles according to the guiding-center equations of motion,
which are appropriate when the gyroradius has negligible size and
the gyrofrequency is very large.

In our simulations we thus solve the relativistic equations of motion
under the guiding-center approximation (GCA), in which the particle
gyration around magnetic-field lines is averaged over, and only the
motion of the particle guiding center is considered (e.g. Vandervoort
1960; Northrop 1963). In this paradigm, the spatial part of the particle
four-velocity 𝒖 = 𝒗𝛾 (with the Lorentz factor 𝛾 = 1/

√︁
1 − 𝑣2/𝑐2 =√︁

1 + 𝑢2/𝑐2, where 𝑐 is the speed of light) is split into the parallel
and perpendicular1 components 𝑢 ∥ = 𝒖 · 𝒃 and 𝑢⊥ ≃

√︃
𝑢2 − 𝑢2

∥ with

1 Note that with 𝑢⊥ we indicate the perpendicular particle velocity linked to
the particle’s gyromotion, i.e. excluding the velocity drift terms that determine
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4 F. Bacchini et al.

Figure 3. Spatial distribution of |∇ · 𝒗 |/𝑣 inside the looptop at 𝑡 = 2.5𝑡0 for the three MHD simulations considered. As the level of turbulence increases due to
stronger heat injection from the footpoints (from case A to C, see Sec. 2), the looptop region features progressively more numerous turbulent structures, where
the fluid velocity is characterized by sharp gradients. The bottom-right panel shows the fraction of electrons (with respect to the initial number) trapped inside
the looptop over time.

respect to the magnetic field 𝑩 with unit vector 𝒃 = 𝑩/𝐵. For a
charged particle of mass 𝑚 and charge 𝑞, the guiding-center position
𝑹, parallel four-velocity 𝑢 ∥ , and magnetic moment 𝜇 = 𝑚𝑢2

⊥/(2𝐵𝜅)
evolve as
d𝑹
d𝑡

=
𝑢 ∥
𝛾
𝒃 + 𝒗𝐸 + 𝒗curv + 𝒗pol + 𝒗∇𝐵 + 𝒗rel, (1)

d𝑢 ∥
d𝑡

=
𝑞

𝑚
𝐸 ∥ + 𝑎curv + 𝑎∇𝐵, (2)

d𝜇
d𝑡

= 0, (3)

the guiding-center motion across magnetic-field lines. These terms are typi-
cally much smaller than 𝑢∥ , hence we can safely approximate 𝑢2

⊥ ≃ 𝑢2 − 𝑢2
∥ .

If needed, a better approximation is given by 𝑢2
⊥ ≃ 𝑢2 − 𝑢2

∥ − 𝑣2
𝐸
𝛾2, since

𝒗𝐸 is the dominant drift term (see e.g. Bacchini et al. 2020).

where 𝐸 ∥ = 𝑬 · 𝒃. Here, the motion of the particle’s guiding center
(eq. (1)) is described as a superposition of motions along and across
magnetic-field lines, indicated by a number of “drift” velocity terms.
The dominant term 𝒗𝐸 = 𝑬 × 𝑩/𝐵2 is the “𝑬 × 𝑩” drift, with asso-
ciated Lorentz factor 𝜅 = 1/

√︃
1 − 𝑣2

𝐸
/𝑐2. In addition to 𝒗𝐸 , the other

drift terms are the curvature drift,

𝒗curv =
𝑚𝑐𝜅2

𝑞𝐵
𝒃 ×


𝑢2
∥
𝛾

(𝒃 · ∇) 𝒃 + 𝑢 ∥ (𝒗𝐸 · ∇) 𝒃
 , (4)

the polarization drift,

𝒗pol =
𝑚𝑐𝜅2

𝑞𝐵
𝒃 ×

[
𝑢 ∥ (𝒃 · ∇) 𝒗𝐸 + 𝛾 (𝒗𝐸 · ∇) 𝒗𝐸

]
, (5)

the mirror (or “∇𝐵”) drift,

𝒗∇𝐵 =
𝜇𝑐𝜅2

𝛾𝑞𝐵
𝒃 ×∇ (𝐵/𝜅) , (6)

MNRAS 000, 1–14 (0000)
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and the relativistic drift,

𝒗rel =
𝑢 ∥𝐸 ∥ 𝜅

2

𝑐𝛾𝐵
𝒃 × 𝒗𝐸 . (7)

Likewise, the parallel momentum evolves (eq. (2)) according to the
parallel-acceleration term 𝑎 ∥ = 𝑞𝐸 ∥/𝑚, as well as the curvature
acceleration,

𝑎curv = 𝒗𝐸 ·
[
𝑢 ∥ (𝒃 · ∇) 𝒃 + 𝛾 (𝒗𝐸 · ∇) 𝒃

]
, (8)

and the mirror acceleration term,

𝑎∇𝐵 = − 𝜇

𝑚𝛾
𝒃 · ∇ (𝐵/𝜅) . (9)

Our Eq. (3) adopts the usual adiabatic-invariant assumption, such that
the magnetic moment remains constant. The use of GCA equations
in test-particle simulations is customary in solar contexts (e.g. Wood
& Neukirch 2005; Gordovskyy et al. 2010; Threlfall et al. 2015); in
all these expressions, we ignored terms proportional to time deriva-
tives of the electromagnetic fields, under the assumption that particle
dynamics takes place on much faster time scales than those over
which MHD fields typically evolve (see e.g. Ripperda et al. 2017a,b,
2018). Eqs. (1)–(3) are solved in MPI-AMRVAC with a fourth-order
Runge-Kutta method with adaptive stepsize (see Sec. 6.1 of Keppens
et al. 2023).

3 PARTICLE TRAPPING IN MHD LOOPTOP
TURBULENCE

First, we wish to verify whether turbulence in the MHD looptop can
promote particle trapping, as conjectured by Fang et al. (2016). We
thus consider the three MHD simulations (cases A, B, and C) of an
SXR coronal loop introduced in Sec. 2. As a qualitative measure of
the presence of turbulent structures inside the looptop, in Fig. 3 we
show for all cases the spatial distribution of |∇ · 𝒗/𝑣 | in the loop-
top region at 𝑡 = 2.5𝑡0 (i.e. the end time of the preliminary MHD
runs). We observe that case C (bottom-left panel) presents numerous
turbulent structures with strong and chaotically distributed velocity
gradients. Conversely, in cases A and B (top-left and top-right pan-
els), the turbulence is not well developed and the looptop region
features more coherent, larger-scale plasma flows.

At 𝑡 = 2.5𝑡0, we inject 106 test electrons in each of the three
MHD simulations. Particles are generated at random positions inside
the looptop2 and with velocities drawn from an isotropic Maxwellian
distribution with temperature𝑇 = 20 MK (approximately the average
temperature inside the looptop at 𝑡 = 2.5𝑡0). We evolve this ensemble
of electrons according to the GCA eqs. (1)–(3) until 𝑡 = 2.6𝑡0. During
this time, we progressively delete particles that leave the looptop
region, and keep track of the number of particles that remain inside
that region. The evolution in time of the fraction of trapped electrons
over the total electrons initially injected is shown in the bottom-right
panel of Fig. 3. Over time, particles progressively leave the looptop
and the fraction of trapped particles decreases. The rate of particle
escape starts slowing down in all cases around 𝑡 = 2.55𝑡0, and around
𝑡 = 2.58𝑡0 the fraction of remaining particles is stabilizing. For cases
A and B, where turbulence is weak, the fraction of trapped electrons

2 A particle is considered “inside” the looptop if the MHD temperature at
the particle position is above a specific threshold 𝑇min = 6.5 MK. This is
approximately the temperature at the looptop edge, before a sharp decrease
to the much lower ambient temperature (see Fig. 2).

at the end of the integration time is comparatively (up to 10%) smaller
than for case C, i.e. the case where turbulence is better developed.

To understand the difference in trapping efficiency for the three
cases, we analyze single-particle trajectories. The overall behavior
of electron ensembles is similar between the three MHD simulations:
the majority (> 70%) of particles are trapped inside the looptop .for
long times; electrons generally cannot escape the looptop from the
top or bottom interfaces, where the magnetic-field strength increases
steeply towards the looptop exterior and therefore acts as an efficient,
large-scale magnetic mirror. Electrons are instead typically observed
leaving the looptop from the lower regions, close to the footpoints.
In all cases, we observe that particle trajectories can be divided into
three main classes: i) “Traversing” trajectories that cross the entire
loop structure, eventually leaving the looptop in the vicinity of the
footpoinrs; ii) “Confined” trajectories, where electrons travel along
closed magnetic-field lines inside magnetic islands; and iii) “Bounc-
ing” trajectories, where electrons follow a rapid, oscillating motion
between magnetic islands. Representative trajectories (correspond-
ing to a time period 𝑡 ∈ [2.5, 2.6]𝑡0, where the MHD background is
largely unchanged) for the three types of trajectories are shown for
case C in Fig. 4 (top-left panel).

Each class of trajectories can be qualitatively described as follows:

• Traversing particles follow long paths, exploring the looptop
from one end to the other (white line in top-left panel in Fig. 4).
These trajectories exhibit increasing distortion as the level of tur-
bulence increases: for cases A and B (underdeveloped turbulence),
traversing particles closely follow unperturbed magnetic-field lines,
while for case C (well-developed turbulence), clear scattering pat-
terns emerge in the trajectories, due to particles encountering many
regions of alternating magnetic fields. Even though all traversing
particles eventually leave the looptop, due to these scattering effects
the length of traversing trajectories increases with the level of tur-
bulence. As a consequence, the time taken for traversing particles
to leave the looptop also increases proportionally, producing higher
trapping efficiencies.

• Confined particles follow approximately closed (in the 𝑥𝑦-plane)
trajectories inside the large magnetic islands belonging to the looptop
(top-right panel in Fig. 4). The motion of these particles in the 𝑥𝑦-
plane is predominantly parallel to the in-plane magnetic-field lines
forming these islands, without strong scattering. Particles traveling
along these trajectories may remain confined for long times, leav-
ing magnetic islands only when the magnetic-field structure in the
confining region changes significantly during the MHD evolution.

• Bouncing particles exhibit fast oscillatory motion in limited
regions of space between large magnetic islands (bottom-right panel
in Fig. 4). These particles are reflected at the island interfaces, where
the local steep increase in the magnetic-field strength acts as an
efficient mirror.

To qualitatively relate the presence of different particle trajectories
with the level of development of turbulence inside the looptop, we
adopt the following strategy: for each particle, we measure the “area”
Δ𝐴 spanned by its trajectory, by simply approximating each area
as a rectangle bounded by the maximum and minimum coordinate
reached by a particle in each direction. We normalize the measured
areas by the area Δ𝐴CL ≃ 350 (Mm)2 of the upper looptop region, to
qualitatively compare the spatial size of the region explored by elec-
trons with the size of the whole turbulent looptop. Then, we construct
the distribution function 𝑓 (Δ𝐴/Δ𝐴CL) = d𝑁/d(Δ𝐴/Δ𝐴CL) of the
range of areas spanned by all electrons in the three MHD simula-
tions. This is shown in Fig. 4 (bottom-left panel), where we measure
a clear increase in the number of electrons spanning smaller areas

MNRAS 000, 1–14 (0000)
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Figure 4. Different types of electron trajectories inside a coronal looptop. Top-left panel: representative “traversing” (i.e. crossing the entire looptop), “confined”,
and “bouncing” trajectories (white lines). Top-right panel: zoomed-in view of a confined trajectory inside a large magnetic island (with magnetic-field lines
shown in purple). Bottom-right panel: zoomed-in view of a bouncing trajectory between magnetic islands. Bottom-left panel: distribution of sizes of the spatial
regions spanned by particle trajectories in the three different MHD simulations. As the level of turbulence increases (from case A to C), trajectories spanning
smaller areas become more numerous. Approximate thresholds on the size of the area spanned by different types of trajectories are indicated with dashed vertical
lines.

when turbulence is more developed (e.g. case C). Conversely, more
electrons spanning larger areas are present when turbulence is less
developed (e.g. case A). This indicates that MHD turbulence inside
coronal looptops can achieve a high trapping efficiency by confining
electrons in smaller regions of space, inside or between magnetic is-
lands formed by the turbulence dynamics. In particular, we measure
a net increase in the total number of bouncing trajectories, which are
much more numerous for case C, where turbulence is well developed
and more magnetic islands are present. In Fig. 4 (bottom-left panel),
we have subdivided the range of Δ𝐴/Δ𝐴CL with approximate thresh-
olds to indicate traversing trajectories (with areas comparable with
the looptop size, Δ𝐴/Δ𝐴CL > 1), confined trajectories (exploring a
significant fraction of the looptop region, 0.03 < Δ𝐴/Δ𝐴CL < 1),
and bouncing trajectories (with areas much smaller than the size of
the looptop, Δ𝐴/Δ𝐴CL < 0.03). We emphasize that these thresholds

are only indicative, and mainly serve to guide the eye when qualita-
tively classifying different trajectory types. We have however verified
that, below the indicated threshold, no confined trajectories exist, and
particles are only found on bouncing orbits.

The particle-trapping dynamics discussed above can be understood
by considering the relative importance of drift and force terms, deter-
mined by the MHD background conditions, that appear on the right-
hand side of eqs. (1)–(3). In Fig. 5, we show the initial (at 𝑡 = 2.5𝑡0,
the time of the initial particle injection) distribution of the magnitude
of all drift-velocity terms (top panel) and parallel-acceleration terms
(middle panel) from the GCA equations3, normalized by a reference

3 Note that we exclude terms related to 𝐸∥ , which vanishes in our ideal-MHD
simulations.
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fluid velocity 𝑣0 ≃ 1.16 × 105 m/s. These terms determine the par-
ticle motion in our simulations; as expected from the ordering of
drift terms in the governing equations, we observe that the dominant
drift velocity is 𝒗𝐸 . Mirror and curvature drifts 𝒗∇𝐵 and 𝒗curv are
the second and third most important terms, with the polarization
drift 𝒗pol contributing the least to particle motion. The distribution
of parallel-acceleration terms in Fig. 5, in accordance with that of
drift-velocity terms, shows that mirror acceleration 𝑎∇𝐵 dominates
over curvature acceleration 𝑎curv.

Finally, in the bottom panel of Fig. 5 we show the evolution of the
distribution of | cos 𝜃 | over 𝑡 ∈ [2.5, 2.51]𝑡0, where the pitch angle
𝜃 = tan−1 (𝑢⊥/𝑢 ∥ ). From an initial isotropic distribution at 𝑡 = 2.5𝑡0,
we observe a gradual increase in the number of electrons with small
| cos 𝜃 | (i.e. large pitch angles), and a corresponding decrease in the
number of electrons with large | cos 𝜃 | (i.e. small pitch angles). This
is a consequence of dominant mirror forces acting on the electrons:
within a relatively short time (𝛿𝑡 = 0.01𝑡0), a large fraction of elec-
trons experience strong scattering and start following orbits that cross
magnetic-field lines. In a turbulent flow such as that created inside the
looptop, this scattering (and associated mirror forces) is promoted
by numerous structures of alternating magnetic field along random
directions. Overall, electrons experiencing continuous scattering are
much less likely to follow open field lines, and are therefore con-
fined inside the looptop for longer times. These scattered electrons
precisely correspond to those following “bouncing” trajectories as
shown in Fig. 4, while “confined” electrons, although trapped, sim-
ply follow closed field lines. Since these two types of trajectories
correspond to the long-lived particle populations that remain inside
the looptop over long times, we now analyze the dynamics of these
electrons more in detail.

Confined trajectories: The distinguishing feature of these trajec-
tories is the trapping effect that occurs inside magnetic islands, i.e.
regions of strong 𝐵 characterized by closed field lines in the 𝑥𝑦-plane.
Particles on confined trajectories tightly follow closed field lines in a
predominantly parallel motion. In Fig. 6 (top row), we show the same
confined trajectory of Fig. 4, now in three dimensions (including the
out-of-plane motion); the trajectory is colored by the local 𝑎∇𝐵 (left
panel) and 𝑣 ∥ = 𝑢 ∥/𝛾 (right panel). In addition to forming closed
loops in the 𝑥𝑦-plane, confined particles also travel long distances
along 𝑧 (the direction of the guide field) without experiencing strong
mirror acceleration and while maintaining an approximately constant
(in magnitude and sign) parallel velocity. The lack of strong scatter-
ing and acceleration determines a tight confinement inside the same
magnetic island for long times.

Bouncing trajectories: Bouncing particles are characterized by a
rapid, oscillating motion trapped between magnetic islands. In Fig. 6
(bottom row) we show the same bouncing trajectory of Fig. 4, here
in three dimensions and colored by 𝑎∇𝐵 (left panel) and 𝑣 ∥ = 𝑢 ∥/𝛾
(right panel). This particle only travels a short distance along 𝑧,
instead moving predominantly in the 𝑥𝑦-plane while bouncing be-
tween regions of large magnetic-field gradients. Strong mirror forces
act on this particle, converting parallel motion into perpendicular
motion, causing an inversion in the particle trajectory and a drift
across magnetic-field lines.

With this analysis, we are able to identify the forces that determine
qualitatively different particle trajectories (i.e. confined and bounc-
ing), namely inside and between magnetic islands (i.e. structures of
coherent fields). Confined particles are found in regions of strong
field and are therefore tightly bound to magnetic-field lines. Con-
versely, bouncing particles are found in regions of weaker fields, and
experience strong mirror forces and fast oscillatory motion when en-

Figure 5. Top and middle panels: Distribution at 𝑡 = 2.5𝑡0 (the time of
the initial particle injection) of the magnitude of drift-velocity and parallel-
acceleration terms, respectively, measured inside the looptop for case C,
according to the GCA eqs. (1)–(3) (without 𝐸∥ -related terms). The dominant
drifts are due to 𝑬 × 𝑩 and mirror motion, and the dominant force term
is related to mirror effects. Bottom panel: Distribution of pitch angles for
𝑡 ∈ [2.5, 2.51]𝑡0, showing that electrons experience rapid scattering across
magnetic-field lines.
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Figure 6. A portion of the same representative “confined” (top row) and “bouncing” (bottom row) trajectories of Fig. 4, shown here in three dimensions and
colored by 𝑎∇𝐵 (left) and 𝑣∥ = 𝑢∥/𝛾 (right). While confined particles mostly follow magnetic-field lines, bouncing particles are continuously reflected by mirror
forces.

countering island boundaries; this leads to scattering and conversion
of parallel momentum into perpendicular momentum and vice versa.

In the next Sections, we analyze the energetics of looptop-trapped
particles more in detail.

4 PARTICLE ENERGIZATION IN MHD LOOPTOP
TURBULENCE

Electrons trapped inside the looptop for long times can experience
energization; in the absence of parallel electric fields (as in our ideal-
MHD simulations), the main forces acting on particles (therefore
determining energization) are represented by curvature and mirror
effects, as indicated in Fig. 5 (middle panel). Inside the turbulent
looptop, it is expected that these effects manifest via continuous scat-
tering of electrons across turbulent magnetic structures, promoting
Fermi-type acceleration mechanisms (e.g. Guo et al. 2019; Zhang
& Xiang 2021; Lemoine 2022). To investigate this phenomenon,
here we analyze the time evolution of particle energy distributions in
our simulations, taking care of distinguishing between parallel and
perpendicular energization.

With the same MHD looptop setup employed in Sec. 3, we per-
form again test-particle simulations initializing 106 electrons in the
looptop region. The initial distribution is again a Maxwellian with
temperature 𝑇 = 20 MK. Having assessed that stronger turbulence
produces more efficient trapping (see previous Section), here we fo-
cus on the MHD run where turbulence is most developed (case C pre-
sented earlier). We let our particles evolve in the MHD background,
starting from the state shown in Fig. 2 at 𝑡 = 2.5𝑡0 and running the
simulation until 𝑡 = 4.5𝑡0, i.e. for two full MHD dynamical times.
Because the time integration occurs over MHD time scales, we also

concurrently evolve the MHD background; in addition, we allow the
resolution to increase with respect to the initial state (which has a
maximum AMR level of 5), by setting the maximum AMR level to 7.
As a result, inside the turbulent looptop we now achieve an effective
resolution of 8192 × 5120 cells, i.e. our minimum grid spacing is of
order ∼ 10 km. Note that this is still 4 orders of magnitude larger
than the typical electron gyroradius, justifying the choice of the GCA
paradigm.

In Fig. 7 we show the time evolution of particle energy distri-
butions 𝑓 (𝛾) = d𝑁/d𝛾. The distributions are plotted with cadence
𝛿𝑡 = 0.05𝑡0 for 𝑡 ∈ [2.5, 4.5]𝑡0. From the initial Maxwellian (shown
in black), we observe progressive energization of electrons toward
the high-energy range (top-left panel). The distribution develops
a suprathermal tail with slope ∝ 𝛾−2 and an upper cutoff around
𝛾 ≃ 2, i.e. mildly relativistic energies are achieved in the particle
population. In the top-right and bottom-left panels of Fig. 7 we also
show the evolution of energy distributions in the parallel and per-
pendicular directions, expressed by 𝑓 (𝛾∥ ) := 𝑓 (

√︃
1 + 𝑢2

∥/𝑐
2) and

𝑓 (𝛾⊥) := 𝑓 (
√︃

1 + 𝑢2
⊥/𝑐2) respectively. Here, we can observe that

the main nonthermal features arise in the parallel energy, where a
high-energy tail of constant slope develops. In the perpendicular en-
ergy, instead, suprathermal electrons are present but do not populate
a well-defined tail with a constant characteristic slope. Finally, in the
bottom-right panel we show the evolution in time of the average (over
all particles) increase in total, parallel, and perpendicular energy with
respect to the initial (at 𝑡 = 2.5𝑡0) energy of each particle, 𝛾0. We
observe that, on average, electrons in the initial population have expe-
rienced an increase in 𝛾 of ≳ 0.1%; this increase in energy is, in our
ideal-MHD simulation, entirely attributed to Fermi-like processes
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Figure 7. Evolution of the total particle energy (top-left panel), parallel energy (top-right panel), and perpendicular energy (bottom-left panel) for 𝑡 ∈ [2.5, 4.5]𝑡0.
Energy distributions are evenly spaced in time with a cadence 𝛿𝑡 = 0.05𝑡0. The evolution of the mean energy relative to the initial energy, 𝛾/𝛾0, is shown in
the bottom-right panel for the same time period.

(see e.g. Lemoine 2022). Furthermore, the relative energization in
the perpendicular direction is, on average, slightly stronger than in
the parallel direction. Considering that, as discussed in the previous
Sections, many particles experience long-term confinement between
magnetic islands, this suggests that the mirror effects at play are
efficiently pumping energy into perpendicular particle motion.

In Fig. 7, we also observe that the acceleration proceeds in stages.
Between 𝑡 = 2.5𝑡0 and 𝑡 = 2.55𝑡0 (i.e. between the initial condition,
in black, and the first plotted line, in red), electrons in the high-end
of the energy spectrum are already rapidly pushed to form a mild
suprathermal population. After this phase, the energization becomes
progressively slower; a nonthermal tail arises and settles into a∝ 𝛾−2

slope and between 𝑡 = 3.5𝑡0 and 𝑡 = 4.5𝑡0 we do not measure signifi-
cant changes in the energy distribution. This indicates that one MHD
dynamical time (∼ 86 s) suffices to produce an asymptotic distribu-
tion that does not significantly evolve over longer times, although on
average electrons are still gaining energy at a low rate at the end of
the run (as shown in the bottom-right panel) of Fig. 7.

Finally, we analyze the relation between particle trajectories and
energy gain. In Fig. 8 we show the two-dimensional distribution
of energy gain Δ𝛾 = 𝛾 − 𝛾0 versus the area spanned by particle
trajectories Δ𝐴/Δ𝐴CL (the latter defined as in the previous Section).
To compute these distributions, we focus on the time interval 𝑡 ∈

[3.10, 3.15]𝑡0 (hence here 𝛾0 is measured at 𝑡 = 3.10𝑡0), i.e. around
halfway, and for a fraction 1/40, of the total simulation time; we also
distinguish between total (top panel), parallel (middle panel), and
perpendicular (bottom panel) energy gain. In each panel, we indicate
the range of Δ𝐴/Δ𝐴CL corresponding to bouncing and confined
trajectories (as in Fig. 4).

A first point of interest is that parallel-energy gain is generally
restricted to |Δ𝛾∥ | ∼ 10−3 and is most prominent only for confined
trajectories in a narrow range Δ𝐴/Δ𝐴CL ∈ [0.5, 1]. Conversely,
perpendicular-energy gain is detected up to |Δ𝛾⊥ | ≳ 10−2 for a
large interval Δ𝐴/Δ𝐴CL ∈ [10−2, 1] spanning both confined and
bouncing trajectories4. Assuming that the time interval we consider is
representative of the typical particle energization in developed MHD
looptop turbulence, this result implies that significant parallel-energy
gain is only achieved by confined particles traveling along the largest
closed orbits inside magnetic islands (Δ𝐴/Δ𝐴CL ≃ 1, i.e. those that
explore a region comparable in size to the whole looptop); these are
only a small fraction of the total particles. Perpendicular-energy gain,
instead, occurs rather generally for all particles (both bouncing and

4 We also detect energy gain for Δ𝐴/Δ𝐴CL > 1, corresponding to traversing
particles, which however eventually leave the looptop and are therefore of no
particular interest here.
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Figure 8. Two-dimensional distribution of total (top panel), parallel (middle
panel), and perpendicular (bottom panel) energy gain versus area spanned for
all trajectories over the time interval 𝑡 ∈ [3.10, 3.15]𝑡0.

confined) and is stronger than parallel-energy gain. From Fig. 7 we
also know that, over long times, parallel-energy gain tends to form
nonthermal tails but is on average slightly smaller than perpendicular-
energy gain. We can therefore conclude that perpendicular energy
is rather ubiquitously pumped from the MHD turbulence into the
particle motion, irrespective of the type of trajectory that electrons
follow; while significant parallel-energy gain only occurs for a small
population of electrons confined on specific long-lived orbits without
significant scattering.

5 PRODUCTION OF HARD X-RAYS FROM
ACCELERATED ELECTRONS

We now turn our attention to the possibility of producing HXRs from
the plasma dynamics inside the looptop. In the scenario presented by
Fang et al. (2016), it is suggested that strong looptop HXR sources
can be produced by energetic electrons by inverse Compton scatter-
ing of soft seed photons to higher energies. However, recent works
have highlighted that inverse Compton scattering should be expected

to have a much smaller contribution to looptop HXR emission than
Bremsstrahlung, because of the low flux of SXR photons and the
low collision rate between energetic electrons and the SXR photons
(see e.g. Ruan et al. 2018 and references therein). Here, we there-
fore consider HXR emission from Bremsstrahlung as the dominant
mechanism, and perform forward modeling of this emission using
our particle data.

We synthesize HXR emission based on the spatial and energy
distribution of the test electrons in the looptop. For ion-electron
Bremsstrahlung-led HXR emission, the emissivity in terms of
photons s−1 cm−3 keV−1 is given by

𝑗 (𝜀ph) =
∫ ∞

𝜀ph

𝑛𝐹 (𝜀el)𝑄(𝜀ph, 𝜀el)d𝜀el, (10)

where 𝜀ph and 𝜀el are the photon and electron energy (in keV), 𝑛 is
local ion number density (in cm−3), 𝐹 is the energetic-electron flux
(in electrons s−1 cm−2 keV−1), and 𝑄 is the emission cross-section
(in cm2) (see e.g. Kontar et al. 2011). To account for the contribution
of our test electrons to the emissivity 𝑗 calculated at each spatial
location 𝒙, we compute for each 𝑖-th electron

𝑗𝑖 (𝒙, 𝜀ph) = 𝑛(𝒙)𝑣𝑖𝑄(𝜀ph, 𝜀el,𝑖)𝛿( |𝒙 − 𝒙𝑖 |), (11)

where 𝒙𝑖 is the location of the 𝑖-th test electron, 𝑣𝑖 is the electron
speed, 𝜀el,𝑖 is the electron energy, and 𝛿 is the Dirac delta function.
The emission cross-section is taken from Haug (1997). To store the
HXR flux, we employ an image mesh of pixel size 𝜎 = 2.3′′, equal
to the pixel size of RHESSI observations (Lin et al. 2002). The
brightness of the 𝑘-th pixel is therefore given by

𝐼𝑘 =
∑︁
𝑖

∬ ∫ 𝜀max
ph

𝜀min
ph

𝑗𝑖 (𝒙, 𝜀ph)𝑒
−|𝒙−𝒙′ |2

2𝜎2 d𝜀phd2𝒙d2𝒙′

=
∑︁
𝑖

∫ ∫ 𝜀max
ph

𝜀min
ph

𝑛(𝒙𝑖)𝑣𝑖𝑄(𝜀ph, 𝜀el,𝑖)𝑒
−|𝒙𝑖−𝒙′ |2

2𝜎2 d𝜀phd2𝒙′,

(12)

where multiplication by a Gaussian point-spread function mimics the
instrument effect, with the pixel size 𝜎 representing the variance.

The results of this calculation, carried out at 𝑡 = 4.5𝑡0 (i.e. the final
time in our simulation), are shown in Fig. 9 (left panel), where we
show isocontours of the HXR flux (in the 10–20 keV energy range) at
10%, 30%, 50%, and 70% of the maximum. The background color
here represents synthetic EUV emission in the 131 Å passband,
calculated from the MHD quantities with a pixel size of 0.6′′ to
mimic observations from SDO/AIA. In the same Figure, we show
the spatially integrated test-particle flux spectrum (top right) and
HXR photon spectrum (bottom right). We observe that, due to the
trapping of energetic electrons at coronal height, a strong coronal
HXR source is produced. The coronal HXR source overlaps with the
top of the bright loop in the EUV 131 Å passband, similar to some
observations (e.g. Su et al. 2013). The HXR spectrum here has a
single power-law distribution with a spectral index of ∼3.7. This is in
accordance with observational data, where a spectral index around 4
is commonly measured in flare coronal HXR sources (e.g. Petrosian
et al. 2002; Battaglia & Benz 2006; Gary et al. 2018).

6 CONCLUSIONS

In this work, we presented a study of the dynamics of electrons in
SXR, post-flare coronal loops. This is a first demonstration of the
particle-tracing capabilities of MPI-AMRVAC 3.0 (Keppens et al.
2023), which we exploited to run 2.5D, ideal-MHD simulations
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Figure 9. Left panel: synthetic emission i) in the EUV at 131 Å passband (in the background), computed from the MHD quantities at 𝑡 = 4.5𝑡0 with pixel
size 0.6′′ to mimic an SDO/AIA observation; and ii) in the HXR 10–20 keV energy range (as red isocontours of X-ray flux at 10%, 30%, 50%, and 70% of
the maximum value), computed from the MHD and energetic electrons with pixel size 2.3′′ to mimic a RHESSI observation. Right panels: spatially integrated
test-particle flux spectrum (top) and derived HXR photon spectrum.

of an entire post-flare loop in which turbulence driven by Kelvin–
Helmholtz instabilities develops at the looptop. This was earlier iden-
tified as resulting from the observationally established flare-driven
chromospheric evaporations that invade post-flare loops from the
footpoint regions. The MHD setup is taken from Ruan et al. (2018),
considering three increasing rates of energy injection at the loop foot-
points. Our MHD simulations are agnostic of the main reconnection
process above the looptop, which we do not model; rather, we as-
sume footpoint heating (which comes e.g. from accelerated particle
beams from the reconnection region, which sweep out laterally with
the flare ribbons) driving fluid flows and creating post-flare looptop
turbulence. In this time-evolving, large-scale turbulence, we modeled
ensembles (∼ 106) of test electrons (which do not provide feedback to
the MHD), characterizing their trapping and acceleration dynamics.
Due to the vast difference between MHD and particle scales (e.g. in
terms of the electron gyroradius), we resorted to the guiding-center
approximation to evolve our test electrons.

First, we have studied the relation between the development of KHI
turbulence and the trapping efficiency of the looptop region. We in-
jected our test electrons in the looptop region, drawing their initial ve-
locity from a Maxwellian distribution with temperature 𝑇 = 20 MK.
By considering a short time interval (where the MHD background is
practically unchanged), we have found that when turbulence is well-
developed (in our case, due to fast flows rising from the loop foot-
points), many more electrons can remain trapped inside the looptop.
This is expected, since the turbulence provides an efficient scatter-
ing mechanism that causes particles to continuously bounce between

alternating magnetic fields in the looptop, reducing the possibility
of following open field lines that lead outside of the looptop re-
gion. By studying the types of particle trajectories we observe in
the looptop turbulence, we indeed found that escaping (“traversing”)
particles constitute a small population that follows long trajectories,
crossing the whole turbulent region and leaving the looptop from
the sides. Conversely, electrons trapped for long times either follow
closed field lines inside magnetic islands (“confined” trajectories) or
rapidly bounce between islands (“bouncing” trajectories). We have
shown that better-developed turbulence, in particular, corresponds
to an increase in the number of confined and bouncing particles;
their trapping is determined by strong mirror forces, which domi-
nate (after 𝑬 × 𝑩 terms) among the guiding-center drifts. We have
verified that the action of mirror terms, characteristic of developed
turbulence, very rapidly scatters electrons to large pitch angles, deter-
mining drifts across magnetic-field lines that result in the bouncing
motion of trapped particles.

We have then turned our attention to electron energization in
MHD looptop turbulence. We initialized again our test electrons
from a Maxwellian with 𝑇 = 20 MK, and evolved both the electrons
and the MHD background for two MHD dynamical times (approx-
imately 172 s). In this way, we could track the evolution in time
of particle energy distribution functions while the background con-
currently evolves over multiple MHD timescales. In our ideal-MHD
runs (where parallel electric fields are absent by definition), we ex-
pect Fermi processes to be the sole responsible of particle accel-
eration and to potentially create a power-law energy spectrum. We
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observed that, for the setup where turbulence is best developed, the
initial Maxwellian distribution indeed develops a clear power-law
tail that stabilizes to a characteristic ∝ 𝛾−2 slope within one MHD
time (∼ 86 s). This energy gain occurs in both the parallel and the
perpendicular direction with respect to the local magnetic field, but
the energization is qualitatively different: in the parallel direction,
the energy distribution presents a power-law tail, which is instead
absent in the perpendicular-energy distribution. We also measured
the relative increase in energy (with respect to the initial value) per
particle, finding that on average, electrons gain slightly more energy
in the perpendicular direction, at least over long times. Finally, we
have correlated the energy increase with the type of trajectory fol-
lowed by each particle, finding that larger perpendicular-energy gain
corresponds to bouncing trajectories confined within smaller regions
of space. This indicates that the mirror terms previously discussed
can efficiently act to energize trapped electrons in the perpendicular
direction.

To build a link between our numerical experiments and possible
observations, we have constructed synthetic radiation maps combin-
ing the MHD and test-particle data from our simulations. Assuming
Bremsstrahlung-led HXR emission, we have calculated the photon
fluxes that our energetic electrons can produce in the turbulent loop-
top MHD background, processing the data via an artificial pixel size
of 2.6′′ to mimic a RHESSI observation. We measured clear HXR
radiation in the interior of the looptop in the range 10–20 keV, with
an integrated HXR photon flux with characteristic slope ∝ 𝜀−3.7

ph .
This is in good agreement with some observations (e.g. Petrosian
et al. 2002; Battaglia & Benz 2006; Gary et al. 2018); however,
other observational studies report that coronal HXR sources can be
located above the bright EUV SXR loop, suggesting that most of the
electron acceleration could happen in the flare reconnection region
(see e.g. Masuda et al. 1994; Chen et al. 2020) instead of the looptop
region that we consider here. In this context, it could be of interest to
see whether high resolution HXR imagers, like the ASO-S/HXI in-
strument (Gan et al. 2019), can reveal fine-structured, looptop HXR
sources in flare systems, where potentially HXR emission may arise
both from the region above the looptop (i.e. reconnection-outflow and
termination-shock regions) and from underlying, post-flare turbulent
looptops, as studied here.

The aim of this work was to build a first link between test-particle
simulations, so far relatively underexplored in solar applications (e.g.
Kong et al. 2022 and references therein), and potential observables
produced by energetic electrons originating in the turbulent coronal
plasma of post-flare loops. Although the results we present require
more quantitative validation, they constitute a prime example of how
nonthermally accelerated test electrons can be employed to construct
the observable signals in post-flare loop modeling. Our approach also
leaves ample ground for improvements, as we describe below, which
we will pursue in future work.

First, in our MHD setup we are only considering an isolated loop-
top source without the reconnection region above. We are therefore
neglecting the interaction of the reconnection exhaust with the loop-
top structure, which could produce drastically different dynamics
involving large-scale shocks and subsequent particle acceleration.
We also remark the fact that HXR production in our looptop source
should be eventually compared with the HXR emission from the
reconnection region, which may completely outshine the looptop.
This may be case-dependent, and a larger and more complex set of
simulations, where the reconnection region is included, is needed to
address the issue. In that context, we could start from the recent 3D
MHD simulations of Ruan et al. (2023), where it was established

that volume-filling turbulence, induced by KH processes related in
the reconnection outflows, will develop during the impulsive phase.

A second point requiring attention stems from our particle mod-
eling. Assuming the test-particle approach is correct (i.e. that high-
energy, nonthermal populations contain a negligible fraction of the
looptop plasma energy), it remains to be evaluated how important
kinetic effects discarded by the GCA paradigm could be. For exam-
ple, high-energy electrons could attain Larmor radii large enough to
interact with electromagnetic fluctations over relatively large scales,
which would produce an additional energization channel we are not
considering. Simulating particle ensembles with the full equations
of motion is extremely expensive, and needs to be left for future
work if it is at all possible. In addition, it is known that particle
simulations in 2D geometries (with an ignorable third direction) are
affected by numerical artifacts potentially quenching cross-field-line
particle motion (Jokipii et al. 1993; Jones et al. 1998). The prob-
lem of dimensionality also affects the development of turbulence
itself, which broadly presents qualitative differences in 2D and 3D.
However, it has been proven that, in terms of particle acceleration,
2D and 3D turbulence produce very similar results (e.g. Comisso &
Sironi (2018, 2019)), albeit in different (close to relativistic) energy
regimes. We therefore expect no dramatic differences in our results
when we explore 3D setups, but this will need to be assessed. In
summary, further work is needed to verify our results with 3D sim-
ulations, to ensure that the particle-trapping effects we quantified in
this paper carry over to more realistic 3D simulations.

Finally, our MHD model requires thorough evaluation before quan-
titative statements can be made. First, our post-flare model currently
does not include particle injection via reconnection above the loop-
top, which will be included in future work with more refined flare
models (e.g. Druett et al. 2023a,b). Moreover, the quality of the MHD
turbulence in the looptop, in terms of how well the energy cascade
can be captured, is entirely dependent on dissipation terms and nu-
merical resolution. Here, we have excluded explicit dissipation (e.g.
resistivity), implying that there is no intrinsic dissipative scale in our
turbulence, and dissipation is instead driven on the numerical grid
by truncation errors. When changing the resolution then, the MHD
results are expected to change, and the same should apply to the
particle dynamics. In Appendix A we particularly elaborate on the
effect of resolution on test-particle energization. However, the lack of
explicit resistivity is perhaps the most crucial point, because without
parallel electric fields our test electrons are essentially insensitive
to impulsive acceleration (e.g. at reconnection sites) in the parallel
direction. It has been recently argued in other contexts that particle
acceleration in plasma turbulence is a multi-stage process, where par-
ticle “injection” occurs by means of parallel electric fields (Comisso
& Sironi 2019; Guo et al. 2019; Zhdankin et al. 2019). The injected
electrons then continue accelerating via ideal-MHD processes. Here,
we can only possibly model the latter, while resistivity (which would
allow for parallel electric fields) is absent. In the future, we will
quantify the importance of injection by conducting nonideal-MHD
runs including resistivity.

In summary, our work opens several possible pathways to further
investigate the dynamics of electrons in macroscopic coronal struc-
tures such as turbulent loops. We have demonstrated the possibility
of constructing observables from MHD augmented with particle in-
formation, which takes us a step further toward the self-consistent
modeling of the solar corona with first-principles methods.
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APPENDIX A: EFFECT OF NUMERICAL RESOLUTION
ON TEST-PARTICLE ENERGIZATION

Because of our ideal-MHD model, the macroscopic properties of
turbulence inside the looptop are heavily dependent on the numeri-
cal resolution. More specifically, the turbulent cascade can progress
down to the smallest scales resolved in the simulation, i.e. the grid
spacing of the highest AMR level. There, turbulent energy is dissi-
pated numerically; by increasing the numerical resolution, one can
in principle allow the cascade to progress to smaller scales, and the
corresponding inertial range to extend indefinitely. For this reason, it
is not expected to find convergence in the properties of turbulence by
simply increasing numerical resolution above a certain threshold. On
the contrary, in viscous-/resistive-MHD simulations the dissipation
scales are set by an explicit viscosity/resistivity, and it is possible to
obtain converged results by resolving the dissipation scales on the
grid (e.g. Ripperda et al. 2020).

Since particle energization in our simulations depends on the prop-
erties of turbulence, by the argument above our test-particle results
are expected to depend on the numerical resolution. In particular, we
expect scattering mechanisms to be more efficient when the turbulent
cascade progresses closer to the kinetic scales, because magnetic-
field fluctuations can exist over a wider range of spatial scales. To
test the effect of numerical resolution, we have performed short sim-
ulations (for a duration 𝛿𝑡 = 0.05𝑡0) with the same initial conditions
mentioned in Sec. 3 and 4, increasing the number of AMR levels
from 5 up to 9. The results are shown in Fig. A1, where we plot the
energy distribution of all particles inside the looptop at the end of
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Figure A1. Evolution of particle energy distributions during 𝑡 ∈
[2.5, 2.55]𝑡0 when employing different resolutions in the MHD background,
from 5 to 9 AMR levels. The initial Maxwellian evolves to different states,
depending on the resolution, within this short time frame.

the run, compared to the initial Maxwellian distribution. Even within
such a short time period, evident differences in the energy distribu-
tion develop between runs with different numerical resolutions. The
distribution becomes progressively more energetic as the resolution
is increased, and the results do not appear to converge even with
many AMR levels (as expected from the argument above).

An interesting question is whether the difference in energy dis-
tribution is actually secular, or if it is only the result of different
energization rates. If, for example, the time evolution of the energy
distribution reaches a common, resolution-agnostic steady state after
some time, it is possible that higher numerical resolutions simply
push particles to this state faster. If, on the other hand, the final state
also qualitatively depends on the numerical resolution, matters be-
come more complicated. In such a case, it could become difficult to
make definitive statements on the physics of energization processes
in ideal-MHD simulations. However, testing these possibilities would
require running large simulations (even larger than those presented
here) for long times (i.e. until the distributions have converged),
which is beyond our current possibilities.
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